Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans.

نویسندگان

  • Maria Bastaki
  • Karen Huen
  • Paolo Manzanillo
  • Neha Chande
  • Connie Chen
  • John R Balmes
  • Ira B Tager
  • Nina Holland
چکیده

OBJECTIVES This study examined the association between genetic polymorphisms and enzyme activity for antioxidant enzymes that share a common detoxification pathway: manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1) and catalase. METHODS MnSOD, GPX1, and catalase activities were measured in isolated erythrocytes of 231 healthy, non-smoking student volunteers (55% women, ages 17-21, majority Asian or Caucasian). DNA from blood clots was genotyped by Taqman PCR (C47T : MnSOD and C593T : GPX1) and standard PCR (-262C>T : catalase). Associations between genotype and enzyme activity were analyzed by multiple linear regression, adjusted for baseline factors including gender and ethnicity. RESULTS Minor allele frequencies ranged from 13% for catalase (T) to 18% for GPX1 (T), and 33% for MnSOD(C) with significant variation between ethnicities. Median GPX1 activity was 13.2 U/g Hb with a six-fold difference between lowest and highest levels. Catalase activity ranged eight-fold (median: 86.3 k/g Hb), while median MnSOD activity was 2.8 U/mg Hb with a 56-fold range of values. MnSOD enzyme activity was 15% higher in females than males (95%CI : -1%, 32%), and 33% higher in CT or TT individuals (C47T) versus CC individuals (95%CI : 7-59%). On average, catalase activity was 18.1 k/g Hb lower for TT subjects (-262C>T) versus CC subjects (95% CI: -32.3, -4.0). All enzyme activities were correlated (r=0.3-0.4, P<0.001). CONCLUSIONS Interindividual variability of antioxidant enzyme activity in healthy young adults was partially explained by significant associations with three known genetic polymorphisms, and was further modified by gender and ethnicity. A substantial component of this variability may be attributable to differences in diet, environmental exposures, and additional genetic factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse.

Exogenous superoxide dismutase, catalase and scavengers of the hydroxyl radical protect pancreatic-islet cells against the toxic actions of alloxan in vitro [Grankvist et al. (1979) Biochem. J. 182, 17--25]. To test whether the extraordinary sensitivity of islet cells to alloxan is due to a deficiency of endogenous enzymes protecting against oxygen-reduction products, we assayed CuZn-superoxide...

متن کامل

Modulation of the Activities of Catalase, Cu-Zn, Mn Superoxide Dismutase, and Glutathione Peroxidase in Adipocyte from Ovariectomised Female Rats with Metabolic Syndrome

The aim of this study was to evaluate the association between estrogen removal, antioxidant enzymes, and oxidative stress generated by obesity in a MS female rat model. Thirty two female Wistar rats were divided into 4 groups: Control (C), MS, MS ovariectomized (Ovx), and MS Ovx plus estradiol (E2). MS was induced by administering 30% sucrose to drinking water for 24 weeks. After sacrifice, int...

متن کامل

Alteration of Endogenous Glutathione Peroxidase, Manganese Superoxide Dismutase, and Glutathione Transferase Activity in Cells Transfected with a Copper-Zinc Superoxide Dismutase Expression Vector

Transfection of a human pSV2 (copper-zinc) superoxide dismutase expression vector into murine fibroblasts resulted in stable clones producing increased amounts of copper-zinc superoxide dismutase. A marked increase in endogenous glutathione peroxidase activity (up to 285%) and a smaller increase in glutathione transferase activity (up to 16%) also occurred. Manganese superoxide dismutase activi...

متن کامل

Expression of antioxidant enzymes in human inflammatory cells.

Because antioxidant enzymes may have an important role in the oxidant resistance of inflammatory cells, we investigated the mRNA levels and specific activities of manganese and copper-zinc superoxide dismutases (Mn SOD and Cu,Zn SOD), catalase (Cat), and glutathione peroxidase, as well as the concentrations of glutathione (GSH) in human neutrophils, monocytes, monocyte-derived macrophages, and ...

متن کامل

Endurance training improves the resistance of rat diaphragm to exercise-induced oxidative stress.

The current study was designed to test the hypothesis that endurance training improves the ability of the diaphragm muscle to resist exercise-induced oxidative stress. Twenty-eight male Wistar rats were assigned to either untrained or trained groups. Trained rats were treadmill-trained for 9 wk. Each group was subdivided into acutely exercised or nonexercised groups. Diaphragm muscle from each ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pharmacogenetics and genomics

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2006